1
use std::{
2
    borrow::Cow,
3
    collections::{btree_map, BTreeMap, VecDeque},
4
    sync::Arc,
5
    time::Duration,
6
};
7

            
8
use async_lock::Mutex;
9
use async_trait::async_trait;
10
use bonsaidb_core::{
11
    keyvalue::{
12
        Command, KeyCheck, KeyOperation, KeyStatus, KeyValue, Numeric, Output, SetCommand,
13
        Timestamp, Value,
14
    },
15
    transaction::{ChangedKey, Changes},
16
};
17
use bonsaidb_utils::fast_async_lock;
18
use nebari::{
19
    io::fs::StdFile,
20
    tree::{CompareSwap, KeyEvaluation, Operation, Root, Unversioned},
21
    AbortError, ArcBytes, Roots,
22
};
23
use serde::{Deserialize, Serialize};
24
use tokio::{
25
    runtime::Handle,
26
    sync::{oneshot, watch},
27
};
28

            
29
use crate::{
30
    config::KeyValuePersistence,
31
    jobs::{Job, Keyed},
32
    tasks::Task,
33
    Database, Error,
34
};
35

            
36
595801
#[derive(Serialize, Deserialize, Debug, Clone)]
37
pub struct Entry {
38
    pub value: Value,
39
    pub expiration: Option<Timestamp>,
40
    #[serde(default)]
41
    pub last_updated: Timestamp,
42
}
43

            
44
impl Entry {
45
3
    pub(crate) async fn restore(
46
3
        self,
47
3
        namespace: Option<String>,
48
3
        key: String,
49
3
        database: &Database,
50
3
    ) -> Result<(), bonsaidb_core::Error> {
51
3
        database
52
3
            .execute_key_operation(KeyOperation {
53
3
                namespace,
54
3
                key,
55
3
                command: Command::Set(SetCommand {
56
3
                    value: self.value,
57
3
                    expiration: self.expiration,
58
3
                    keep_existing_expiration: false,
59
3
                    check: None,
60
3
                    return_previous_value: false,
61
3
                }),
62
3
            })
63
            .await?;
64
3
        Ok(())
65
3
    }
66
}
67

            
68
#[async_trait]
69
impl KeyValue for Database {
70
677635
    async fn execute_key_operation(
71
677635
        &self,
72
677635
        op: KeyOperation,
73
677635
    ) -> Result<Output, bonsaidb_core::Error> {
74
677635
        self.data.context.perform_kv_operation(op).await
75
1355270
    }
76
}
77

            
78
impl Database {
79
6985
    pub(crate) async fn all_key_value_entries(
80
6985
        &self,
81
6985
    ) -> Result<BTreeMap<(Option<String>, String), Entry>, Error> {
82
        // Lock the state so that new new modifications can be made while we gather this snapshot.
83
6985
        let state = fast_async_lock!(self.data.context.key_value_state);
84
6985
        let database = self.clone();
85
6985
        // Initialize our entries with any dirty keys and any keys that are about to be persisted.
86
6985
        let mut all_entries = BTreeMap::new();
87
6985
        let mut all_entries = tokio::task::spawn_blocking(move || {
88
6985
            database
89
6985
                .roots()
90
6985
                .tree(Unversioned::tree(KEY_TREE))?
91
6985
                .scan::<Error, _, _, _, _>(
92
6985
                    &(..),
93
6985
                    true,
94
6985
                    |_, _, _| true,
95
6985
                    |_, _| KeyEvaluation::ReadData,
96
6985
                    |key, _, entry: ArcBytes<'static>| {
97
223
                        let entry = bincode::deserialize::<Entry>(&entry)
98
223
                            .map_err(|err| AbortError::Other(Error::from(err)))?;
99
223
                        let full_key = std::str::from_utf8(&key)
100
223
                            .map_err(|err| AbortError::Other(Error::from(err)))?;
101

            
102
223
                        if let Some(split_key) = split_key(full_key) {
103
223
                            // Do not overwrite the existing key
104
223
                            all_entries.entry(split_key).or_insert(entry);
105
223
                        }
106

            
107
223
                        Ok(())
108
6985
                    },
109
6985
                )?;
110
6985
            Result::<_, Error>::Ok(all_entries)
111
6985
        })
112
6227
        .await??;
113

            
114
        // Apply the pending writes first
115
6959
        if let Some(pending_keys) = &state.keys_being_persisted {
116
422
            for (key, possible_entry) in pending_keys.iter() {
117
422
                let (namespace, key) = split_key(key).unwrap();
118
422
                if let Some(updated_entry) = possible_entry {
119
399
                    all_entries.insert((namespace, key), updated_entry.clone());
120
399
                } else {
121
23
                    all_entries.remove(&(namespace, key));
122
23
                }
123
            }
124
6604
        }
125

            
126
6959
        for (key, possible_entry) in &state.dirty_keys {
127
134
            let (namespace, key) = split_key(key).unwrap();
128
134
            if let Some(updated_entry) = possible_entry {
129
134
                all_entries.insert((namespace, key), updated_entry.clone());
130
134
            } else {
131
                all_entries.remove(&(namespace, key));
132
            }
133
        }
134

            
135
6959
        Ok(all_entries)
136
6959
    }
137
}
138

            
139
pub(crate) const KEY_TREE: &str = "kv";
140

            
141
677583
fn full_key(namespace: Option<&str>, key: &str) -> String {
142
677583
    let full_length = namespace.map_or_else(|| 0, str::len) + key.len() + 1;
143
677583
    let mut full_key = String::with_capacity(full_length);
144
677583
    if let Some(ns) = namespace {
145
5392
        full_key.push_str(ns);
146
672191
    }
147
677583
    full_key.push('\0');
148
677583
    full_key.push_str(key);
149
677583
    full_key
150
677583
}
151

            
152
fn split_key(full_key: &str) -> Option<(Option<String>, String)> {
153
143975
    if let Some((namespace, key)) = full_key.split_once('\0') {
154
143975
        let namespace = if namespace.is_empty() {
155
141051
            None
156
        } else {
157
2924
            Some(namespace.to_string())
158
        };
159
143975
        Some((namespace, key.to_string()))
160
    } else {
161
        None
162
    }
163
143975
}
164

            
165
670780
fn increment(existing: &Numeric, amount: &Numeric, saturating: bool) -> Numeric {
166
670780
    match amount {
167
201
        Numeric::Integer(amount) => {
168
201
            let existing_value = existing.as_i64_lossy(saturating);
169
201
            let new_value = if saturating {
170
134
                existing_value.saturating_add(*amount)
171
            } else {
172
67
                existing_value.wrapping_add(*amount)
173
            };
174
201
            Numeric::Integer(new_value)
175
        }
176
670378
        Numeric::UnsignedInteger(amount) => {
177
670378
            let existing_value = existing.as_u64_lossy(saturating);
178
670378
            let new_value = if saturating {
179
670311
                existing_value.saturating_add(*amount)
180
            } else {
181
67
                existing_value.wrapping_add(*amount)
182
            };
183
670378
            Numeric::UnsignedInteger(new_value)
184
        }
185
201
        Numeric::Float(amount) => {
186
201
            let existing_value = existing.as_f64_lossy();
187
201
            let new_value = existing_value + *amount;
188
201
            Numeric::Float(new_value)
189
        }
190
    }
191
670780
}
192

            
193
603
fn decrement(existing: &Numeric, amount: &Numeric, saturating: bool) -> Numeric {
194
603
    match amount {
195
201
        Numeric::Integer(amount) => {
196
201
            let existing_value = existing.as_i64_lossy(saturating);
197
201
            let new_value = if saturating {
198
134
                existing_value.saturating_sub(*amount)
199
            } else {
200
67
                existing_value.wrapping_sub(*amount)
201
            };
202
201
            Numeric::Integer(new_value)
203
        }
204
268
        Numeric::UnsignedInteger(amount) => {
205
268
            let existing_value = existing.as_u64_lossy(saturating);
206
268
            let new_value = if saturating {
207
134
                existing_value.saturating_sub(*amount)
208
            } else {
209
134
                existing_value.wrapping_sub(*amount)
210
            };
211
268
            Numeric::UnsignedInteger(new_value)
212
        }
213
134
        Numeric::Float(amount) => {
214
134
            let existing_value = existing.as_f64_lossy();
215
134
            let new_value = existing_value - *amount;
216
134
            Numeric::Float(new_value)
217
        }
218
    }
219
603
}
220

            
221
#[derive(Debug)]
222
pub struct KeyValueState {
223
    roots: Roots<StdFile>,
224
    persistence: KeyValuePersistence,
225
    last_commit: Timestamp,
226
    background_worker_target: watch::Sender<Option<Timestamp>>,
227
    expiring_keys: BTreeMap<String, Timestamp>,
228
    expiration_order: VecDeque<String>,
229
    dirty_keys: BTreeMap<String, Option<Entry>>,
230
    keys_being_persisted: Option<Arc<BTreeMap<String, Option<Entry>>>>,
231
    shutdown: Option<oneshot::Sender<()>>,
232
}
233

            
234
impl KeyValueState {
235
17773
    pub fn new(
236
17773
        persistence: KeyValuePersistence,
237
17773
        roots: Roots<StdFile>,
238
17773
        background_worker_target: watch::Sender<Option<Timestamp>>,
239
17773
    ) -> Self {
240
17773
        Self {
241
17773
            roots,
242
17773
            persistence,
243
17773
            last_commit: Timestamp::now(),
244
17773
            expiring_keys: BTreeMap::new(),
245
17773
            background_worker_target,
246
17773
            expiration_order: VecDeque::new(),
247
17773
            dirty_keys: BTreeMap::new(),
248
17773
            keys_being_persisted: None,
249
17773
            shutdown: None,
250
17773
        }
251
17773
    }
252

            
253
12325
    pub async fn shutdown(
254
12325
        &mut self,
255
12325
        state: &Arc<Mutex<KeyValueState>>,
256
12325
    ) -> Result<(), oneshot::error::RecvError> {
257
12325
        let (shutdown_sender, shutdown_receiver) = oneshot::channel();
258
12325
        self.shutdown = Some(shutdown_sender);
259
12325
        if self.keys_being_persisted.is_none() {
260
12281
            self.commit_dirty_keys(state);
261
12281
        }
262
12325
        shutdown_receiver.await
263
    }
264

            
265
677639
    pub async fn perform_kv_operation(
266
677639
        &mut self,
267
677639
        op: KeyOperation,
268
677639
        state: &Arc<Mutex<KeyValueState>>,
269
677639
    ) -> Result<Output, bonsaidb_core::Error> {
270
677639
        let now = Timestamp::now();
271
677639
        // If there are any keys that have expired, clear them before executing any operations.
272
677639
        self.remove_expired_keys(now);
273
677639
        let result = match op.command {
274
2951
            Command::Set(command) => {
275
2951
                self.execute_set_operation(op.namespace.as_deref(), &op.key, command, now)
276
            }
277
2635
            Command::Get { delete } => {
278
2635
                self.execute_get_operation(op.namespace.as_deref(), &op.key, delete)
279
            }
280
536
            Command::Delete => self.execute_delete_operation(op.namespace.as_deref(), &op.key),
281
670847
            Command::Increment { amount, saturating } => self.execute_increment_operation(
282
670847
                op.namespace.as_deref(),
283
670847
                &op.key,
284
670847
                &amount,
285
670847
                saturating,
286
670847
                now,
287
670847
            ),
288
670
            Command::Decrement { amount, saturating } => self.execute_decrement_operation(
289
670
                op.namespace.as_deref(),
290
670
                &op.key,
291
670
                &amount,
292
670
                saturating,
293
670
                now,
294
670
            ),
295
        };
296
677639
        if result.is_ok() {
297
677371
            if self.needs_commit(now) {
298
130065
                self.commit_dirty_keys(state);
299
547306
            }
300
677371
            self.update_background_worker_target();
301
268
        }
302
677639
        result
303
677639
    }
304

            
305
2951
    fn execute_set_operation(
306
2951
        &mut self,
307
2951
        namespace: Option<&str>,
308
2951
        key: &str,
309
2951
        set: SetCommand,
310
2951
        now: Timestamp,
311
2951
    ) -> Result<Output, bonsaidb_core::Error> {
312
2884
        let mut entry = Entry {
313
2951
            value: set.value.validate()?,
314
2884
            expiration: set.expiration,
315
2884
            last_updated: now,
316
2884
        };
317
2884
        let full_key = full_key(namespace, key);
318
2884
        let possible_existing_value =
319
2884
            if set.check.is_some() || set.return_previous_value || set.keep_existing_expiration {
320
602
                Some(self.get(&full_key).map_err(Error::from)?)
321
            } else {
322
2282
                None
323
            };
324
2884
        let existing_value_ref = possible_existing_value.as_ref().and_then(Option::as_ref);
325

            
326
2884
        let updating = match set.check {
327
156
            Some(KeyCheck::OnlyIfPresent) => existing_value_ref.is_some(),
328
178
            Some(KeyCheck::OnlyIfVacant) => existing_value_ref.is_none(),
329
2550
            None => true,
330
        };
331
2884
        if updating {
332
2728
            if set.keep_existing_expiration {
333
67
                if let Some(existing_value) = existing_value_ref {
334
67
                    entry.expiration = existing_value.expiration;
335
67
                }
336
2661
            }
337
2728
            self.update_key_expiration(&full_key, entry.expiration);
338

            
339
2728
            let previous_value = if let Some(existing_value) = possible_existing_value {
340
                // we already fetched, no need to ask for the existing value back
341
446
                self.set(full_key, entry);
342
446
                existing_value
343
            } else {
344
2282
                self.replace(full_key, entry).map_err(Error::from)?
345
            };
346
2728
            if set.return_previous_value {
347
223
                Ok(Output::Value(previous_value.map(|entry| entry.value)))
348
2505
            } else if previous_value.is_none() {
349
1144
                Ok(Output::Status(KeyStatus::Inserted))
350
            } else {
351
1361
                Ok(Output::Status(KeyStatus::Updated))
352
            }
353
        } else {
354
156
            Ok(Output::Status(KeyStatus::NotChanged))
355
        }
356
2951
    }
357

            
358
3409
    pub fn update_key_expiration<'key>(
359
3409
        &mut self,
360
3409
        tree_key: impl Into<Cow<'key, str>>,
361
3409
        expiration: Option<Timestamp>,
362
3409
    ) {
363
3409
        let tree_key = tree_key.into();
364
3409
        let mut changed_first_expiration = false;
365
3409
        if let Some(expiration) = expiration {
366
435
            let key = if self.expiring_keys.contains_key(tree_key.as_ref()) {
367
                // Update the existing entry.
368
135
                let existing_entry_index = self
369
135
                    .expiration_order
370
135
                    .iter()
371
135
                    .enumerate()
372
135
                    .find_map(
373
157
                        |(index, key)| {
374
157
                            if &tree_key == key {
375
135
                                Some(index)
376
                            } else {
377
22
                                None
378
                            }
379
157
                        },
380
135
                    )
381
135
                    .unwrap();
382
135
                changed_first_expiration = existing_entry_index == 0;
383
135
                self.expiration_order.remove(existing_entry_index).unwrap()
384
            } else {
385
300
                tree_key.into_owned()
386
            };
387

            
388
            // Insert the key into the expiration_order queue
389
435
            let mut insert_at = None;
390
435
            for (index, expiring_key) in self.expiration_order.iter().enumerate() {
391
205
                if self.expiring_keys.get(expiring_key).unwrap() > &expiration {
392
69
                    insert_at = Some(index);
393
69
                    break;
394
136
                }
395
            }
396
435
            if let Some(insert_at) = insert_at {
397
69
                changed_first_expiration |= insert_at == 0;
398
69

            
399
69
                self.expiration_order.insert(insert_at, key.clone());
400
366
            } else {
401
366
                changed_first_expiration |= self.expiration_order.is_empty();
402
366
                self.expiration_order.push_back(key.clone());
403
366
            }
404
435
            self.expiring_keys.insert(key, expiration);
405
2974
        } else if self.expiring_keys.remove(tree_key.as_ref()).is_some() {
406
68
            let index = self
407
68
                .expiration_order
408
68
                .iter()
409
68
                .enumerate()
410
68
                .find_map(|(index, key)| {
411
68
                    if tree_key.as_ref() == key {
412
68
                        Some(index)
413
                    } else {
414
                        None
415
                    }
416
68
                })
417
68
                .unwrap();
418
68

            
419
68
            changed_first_expiration |= index == 0;
420
68
            self.expiration_order.remove(index);
421
2906
        }
422

            
423
3409
        if changed_first_expiration {
424
434
            self.update_background_worker_target();
425
2975
        }
426
3409
    }
427

            
428
2635
    fn execute_get_operation(
429
2635
        &mut self,
430
2635
        namespace: Option<&str>,
431
2635
        key: &str,
432
2635
        delete: bool,
433
2635
    ) -> Result<Output, bonsaidb_core::Error> {
434
2635
        let full_key = full_key(namespace, key);
435
2635
        let entry = if delete {
436
134
            self.remove(full_key).map_err(Error::from)?
437
        } else {
438
2501
            self.get(&full_key).map_err(Error::from)?
439
        };
440

            
441
2635
        Ok(Output::Value(entry.map(|e| e.value)))
442
2635
    }
443

            
444
536
    fn execute_delete_operation(
445
536
        &mut self,
446
536
        namespace: Option<&str>,
447
536
        key: &str,
448
536
    ) -> Result<Output, bonsaidb_core::Error> {
449
536
        let full_key = full_key(namespace, key);
450
536
        let value = self.remove(full_key).map_err(Error::from)?;
451
536
        if value.is_some() {
452
201
            Ok(Output::Status(KeyStatus::Deleted))
453
        } else {
454
335
            Ok(Output::Status(KeyStatus::NotChanged))
455
        }
456
536
    }
457

            
458
670847
    fn execute_increment_operation(
459
670847
        &mut self,
460
670847
        namespace: Option<&str>,
461
670847
        key: &str,
462
670847
        amount: &Numeric,
463
670847
        saturating: bool,
464
670847
        now: Timestamp,
465
670847
    ) -> Result<Output, bonsaidb_core::Error> {
466
670847
        self.execute_numeric_operation(namespace, key, amount, saturating, now, increment)
467
670847
    }
468

            
469
670
    fn execute_decrement_operation(
470
670
        &mut self,
471
670
        namespace: Option<&str>,
472
670
        key: &str,
473
670
        amount: &Numeric,
474
670
        saturating: bool,
475
670
        now: Timestamp,
476
670
    ) -> Result<Output, bonsaidb_core::Error> {
477
670
        self.execute_numeric_operation(namespace, key, amount, saturating, now, decrement)
478
670
    }
479

            
480
671517
    fn execute_numeric_operation<F: Fn(&Numeric, &Numeric, bool) -> Numeric>(
481
671517
        &mut self,
482
671517
        namespace: Option<&str>,
483
671517
        key: &str,
484
671517
        amount: &Numeric,
485
671517
        saturating: bool,
486
671517
        now: Timestamp,
487
671517
        op: F,
488
671517
    ) -> Result<Output, bonsaidb_core::Error> {
489
671517
        let full_key = full_key(namespace, key);
490
671517
        let current = self.get(&full_key).map_err(Error::from)?;
491
671517
        let mut entry = current.unwrap_or(Entry {
492
671517
            value: Value::Numeric(Numeric::UnsignedInteger(0)),
493
671517
            expiration: None,
494
671517
            last_updated: now,
495
671517
        });
496
671517

            
497
671517
        match entry.value {
498
671383
            Value::Numeric(existing) => {
499
671383
                let value = Value::Numeric(op(&existing, amount, saturating).validate()?);
500
671316
                entry.value = value.clone();
501
671316

            
502
671316
                self.set(full_key, entry);
503
671316
                Ok(Output::Value(Some(value)))
504
            }
505
134
            Value::Bytes(_) => Err(bonsaidb_core::Error::Database(String::from(
506
134
                "type of stored `Value` is not `Numeric`",
507
134
            ))),
508
        }
509
671517
    }
510

            
511
670
    fn remove(&mut self, key: String) -> Result<Option<Entry>, nebari::Error> {
512
670
        self.update_key_expiration(&key, None);
513

            
514
670
        if let Some(dirty_entry) = self.dirty_keys.get_mut(&key) {
515
158
            Ok(dirty_entry.take())
516
512
        } else if let Some(persisting_entry) = self
517
512
            .keys_being_persisted
518
512
            .as_ref()
519
512
            .and_then(|keys| keys.get(&key))
520
        {
521
22
            self.dirty_keys.insert(key, None);
522
22
            Ok(persisting_entry.clone())
523
        } else {
524
            // There might be a value on-disk we need to remove.
525
490
            let previous_value = Self::retrieve_key_from_disk(&self.roots, &key)?;
526
490
            self.dirty_keys.insert(key, None);
527
490
            Ok(previous_value)
528
        }
529
670
    }
530

            
531
    fn get(&self, key: &str) -> Result<Option<Entry>, nebari::Error> {
532
674620
        if let Some(entry) = self.dirty_keys.get(key) {
533
531504
            Ok(entry.clone())
534
143116
        } else if let Some(persisting_entry) = self
535
143116
            .keys_being_persisted
536
143116
            .as_ref()
537
143116
            .and_then(|keys| keys.get(key))
538
        {
539
63809
            Ok(persisting_entry.clone())
540
        } else {
541
79307
            Self::retrieve_key_from_disk(&self.roots, key)
542
        }
543
674620
    }
544

            
545
671762
    fn set(&mut self, key: String, value: Entry) {
546
671762
        self.dirty_keys.insert(key, Some(value));
547
671762
    }
548

            
549
2282
    fn replace(&mut self, key: String, value: Entry) -> Result<Option<Entry>, nebari::Error> {
550
2282
        let mut value = Some(value);
551
2282
        let map_entry = self.dirty_keys.entry(key);
552
2282
        if matches!(map_entry, btree_map::Entry::Vacant(_)) {
553
            // This key is clean, and the caller is expecting the previous
554
            // value.
555
1824
            let stored_value = if let Some(persisting_entry) = self
556
1824
                .keys_being_persisted
557
1824
                .as_ref()
558
1824
                .and_then(|keys| keys.get(map_entry.key()))
559
            {
560
91
                persisting_entry.clone()
561
            } else {
562
1733
                Self::retrieve_key_from_disk(&self.roots, map_entry.key())?
563
            };
564
1824
            map_entry.or_insert(value);
565
1824
            Ok(stored_value)
566
        } else {
567
            // This key is already dirty, we can just replace the value and
568
            // return the old value.
569
458
            map_entry.and_modify(|map_entry| {
570
458
                std::mem::swap(&mut value, map_entry);
571
458
            });
572
458
            Ok(value)
573
        }
574
2282
    }
575

            
576
81530
    fn retrieve_key_from_disk(
577
81530
        roots: &Roots<StdFile>,
578
81530
        key: &str,
579
81530
    ) -> Result<Option<Entry>, nebari::Error> {
580
81530
        roots
581
81530
            .tree(Unversioned::tree(KEY_TREE))?
582
81530
            .get(key.as_bytes())
583
81530
            .map(|current| current.and_then(|current| bincode::deserialize::<Entry>(&current).ok()))
584
81530
    }
585

            
586
844597
    fn update_background_worker_target(&mut self) {
587
844597
        let key_expiration_target =
588
844597
            self.expiration_order
589
844597
                .get(0)
590
844597
                .map_or_else(Timestamp::max, |key| {
591
2292
                    let expiration_timeout = self.expiring_keys.get(key).unwrap();
592
2292
                    *expiration_timeout
593
844597
                });
594
844597
        let now = Timestamp::now();
595
844597
        let duration_until_commit = if self.keys_being_persisted.is_some() {
596
699159
            Duration::MAX
597
        } else {
598
145438
            self.persistence.duration_until_next_commit(
599
145438
                self.dirty_keys.len(),
600
145438
                (now - self.last_commit).unwrap_or_default(),
601
145438
            )
602
        };
603
844597
        let commit_target = now + duration_until_commit;
604
844597
        let closest_target = key_expiration_target.min(commit_target);
605
844597
        if *self.background_worker_target.borrow() != Some(closest_target) {
606
842852
            drop(self.background_worker_target.send(Some(closest_target)));
607
842852
        }
608
844597
    }
609

            
610
701546
    fn remove_expired_keys(&mut self, now: Timestamp) {
611
701755
        while !self.expiration_order.is_empty()
612
1150
            && self.expiring_keys.get(&self.expiration_order[0]).unwrap() <= &now
613
209
        {
614
209
            let key = self.expiration_order.pop_front().unwrap();
615
209
            self.expiring_keys.remove(&key);
616
209
            self.dirty_keys.insert(key, None);
617
209
        }
618
701546
    }
619

            
620
701278
    fn needs_commit(&mut self, now: Timestamp) -> bool {
621
701278
        if self.keys_being_persisted.is_some() {
622
556205
            false
623
        } else {
624
145073
            let since_last_commit = (now - self.last_commit).unwrap_or_default();
625
145073
            self.persistence
626
145073
                .should_commit(self.dirty_keys.len(), since_last_commit)
627
        }
628
701278
    }
629

            
630
155210
    fn stage_dirty_keys(&mut self) -> Option<Arc<BTreeMap<String, Option<Entry>>>> {
631
155210
        if !self.dirty_keys.is_empty() && self.keys_being_persisted.is_none() {
632
142885
            let keys = Arc::new(std::mem::take(&mut self.dirty_keys));
633
142885
            self.keys_being_persisted = Some(keys.clone());
634
142885
            Some(keys)
635
        } else {
636
12325
            None
637
        }
638
155210
    }
639

            
640
    fn commit_dirty_keys(&mut self, state: &Arc<Mutex<KeyValueState>>) {
641
155076
        if let Some(keys) = self.stage_dirty_keys() {
642
142885
            let roots = self.roots.clone();
643
142885
            let state = state.clone();
644
142885
            let tokio = Handle::current();
645
142885
            tokio::task::spawn_blocking(move || Self::persist_keys(&state, &roots, &keys, &tokio));
646
142885
            self.last_commit = Timestamp::now();
647
142885
        }
648
155076
    }
649

            
650
142885
    fn persist_keys(
651
142885
        key_value_state: &Arc<Mutex<KeyValueState>>,
652
142885
        roots: &Roots<StdFile>,
653
142885
        keys: &BTreeMap<String, Option<Entry>>,
654
142885
        runtime: &Handle,
655
142885
    ) -> Result<(), bonsaidb_core::Error> {
656
142885
        let mut transaction = roots
657
142885
            .transaction(&[Unversioned::tree(KEY_TREE)])
658
142885
            .map_err(Error::from)?;
659
142885
        let all_keys = keys
660
142885
            .keys()
661
143196
            .map(|key| ArcBytes::from(key.as_bytes().to_vec()))
662
142885
            .collect();
663
142885
        let mut changed_keys = Vec::new();
664
142885
        transaction
665
142885
            .tree::<Unversioned>(0)
666
142885
            .unwrap()
667
142885
            .modify(
668
142885
                all_keys,
669
143196
                Operation::CompareSwap(CompareSwap::new(&mut |key, existing_value| {
670
143196
                    let full_key = std::str::from_utf8(key).unwrap();
671
143196
                    let (namespace, key) = split_key(full_key).unwrap();
672

            
673
143196
                    if let Some(new_value) = keys.get(full_key).unwrap() {
674
142476
                        changed_keys.push(ChangedKey {
675
142476
                            namespace,
676
142476
                            key,
677
142476
                            deleted: false,
678
142476
                        });
679
142476
                        let bytes = bincode::serialize(new_value).unwrap();
680
142476
                        nebari::tree::KeyOperation::Set(ArcBytes::from(bytes))
681
720
                    } else if existing_value.is_some() {
682
431
                        changed_keys.push(ChangedKey {
683
431
                            namespace,
684
431
                            key,
685
431
                            deleted: existing_value.is_some(),
686
431
                        });
687
431
                        nebari::tree::KeyOperation::Remove
688
                    } else {
689
289
                        nebari::tree::KeyOperation::Skip
690
                    }
691
143196
                })),
692
142885
            )
693
142885
            .map_err(Error::from)?;
694

            
695
142885
        if !changed_keys.is_empty() {
696
142596
            transaction
697
142596
                .entry_mut()
698
142596
                .set_data(pot::to_vec(&Changes::Keys(changed_keys))?)
699
142596
                .map_err(Error::from)?;
700
142596
            transaction.commit().map_err(Error::from)?;
701
289
        }
702

            
703
        // If we are shutting down, check if we still have dirty keys.
704
142885
        if let Some(final_keys) = runtime.block_on(async {
705
142885
            let mut state = fast_async_lock!(key_value_state);
706
142885
            state.keys_being_persisted = None;
707
142885
            state.update_background_worker_target();
708
142885
            // This block is a little ugly to avoid having to acquire the lock
709
142885
            // twice. If we're shutting down and have no dirty keys, we notify
710
142885
            // the waiting shutdown task. If we have any dirty keys, we wait do
711
142885
            // to that step because we're going to recurse and reach this spot
712
142885
            // again.
713
142885
            if state.shutdown.is_some() {
714
134
                let staged_keys = state.stage_dirty_keys();
715
134
                if staged_keys.is_none() {
716
134
                    let shutdown = state.shutdown.take().unwrap();
717
134
                    let _ = shutdown.send(());
718
134
                }
719
134
                staged_keys
720
            } else {
721
142751
                None
722
            }
723
142885
        }) {
724
            Self::persist_keys(key_value_state, roots, &final_keys, runtime)?;
725
142885
        }
726
142885
        Ok(())
727
142885
    }
728
}
729

            
730
17773
pub async fn background_worker(
731
17773
    key_value_state: Arc<Mutex<KeyValueState>>,
732
17773
    mut timestamp_receiver: watch::Receiver<Option<Timestamp>>,
733
17773
) -> Result<(), Error> {
734
189277
    loop {
735
189277
        let mut perform_operations = false;
736
189277
        let current_timestamp = *timestamp_receiver.borrow_and_update();
737
189277
        let changed_result = match current_timestamp {
738
172115
            Some(target) => {
739
172115
                let remaining = target - Timestamp::now();
740
172115
                if let Some(remaining) = remaining {
741
148418
                    tokio::select! {
742
147335
                        changed = timestamp_receiver.changed() => changed,
743
                        _ = tokio::time::sleep(remaining) => {
744
                            perform_operations = true;
745
                            Ok(())
746
                        },
747
                    }
748
                } else {
749
23697
                    perform_operations = true;
750
23697
                    Ok(())
751
                }
752
            }
753
17162
            None => timestamp_receiver.changed().await,
754
        };
755

            
756
171664
        if changed_result.is_err() {
757
            break;
758
171664
        }
759
171664

            
760
171664
        if perform_operations {
761
36096
            let mut state = fast_async_lock!(key_value_state);
762
23907
            let now = Timestamp::now();
763
23907
            state.remove_expired_keys(now);
764
23907
            if state.needs_commit(now) {
765
12730
                state.commit_dirty_keys(&key_value_state);
766
12730
            }
767
23907
            state.update_background_worker_target();
768
147757
        }
769
    }
770

            
771
    Ok(())
772
}
773

            
774
#[derive(Debug)]
775
pub struct ExpirationLoader {
776
    pub database: Database,
777
    pub launched_at: Timestamp,
778
}
779

            
780
impl Keyed<Task> for ExpirationLoader {
781
9209
    fn key(&self) -> Task {
782
9209
        Task::ExpirationLoader(self.database.data.name.clone())
783
9209
    }
784
}
785

            
786
#[async_trait]
787
impl Job for ExpirationLoader {
788
    type Output = ();
789
    type Error = Error;
790

            
791
20478
    #[cfg_attr(feature = "tracing", tracing::instrument)]
792
6826
    async fn execute(&mut self) -> Result<Self::Output, Self::Error> {
793
6826
        let database = self.database.clone();
794
6826
        let launched_at = self.launched_at;
795

            
796
6826
        for ((namespace, key), entry) in database.all_key_value_entries().await? {
797
621
            if entry.last_updated < launched_at && entry.expiration.is_some() {
798
1
                self.database
799
1
                    .update_key_expiration_async(
800
1
                        full_key(namespace.as_deref(), &key),
801
1
                        entry.expiration,
802
1
                    )
803
                    .await;
804
620
            }
805
        }
806

            
807
6800
        self.database
808
6800
            .storage()
809
6800
            .tasks()
810
6800
            .mark_key_value_expiration_loaded(self.database.data.name.clone())
811
44
            .await;
812

            
813
6800
        Ok(())
814
13626
    }
815
}
816

            
817
#[cfg(test)]
818
mod tests {
819
    use std::time::Duration;
820

            
821
    use bonsaidb_core::{
822
        arc_bytes::serde::Bytes,
823
        test_util::{TestDirectory, TimingTest},
824
    };
825
    use futures::Future;
826
    use nebari::io::fs::StdFile;
827

            
828
    use super::*;
829
    use crate::{config::PersistenceThreshold, database::Context};
830

            
831
6
    async fn run_test_with_persistence<
832
6
        F: Fn(Context, nebari::Roots<StdFile>) -> R + Send,
833
6
        R: Future<Output = anyhow::Result<()>> + Send,
834
6
    >(
835
6
        name: &str,
836
6
        persistence: KeyValuePersistence,
837
6
        test_contents: &F,
838
6
    ) -> anyhow::Result<()> {
839
6
        let dir = TestDirectory::new(name);
840
6
        let sled = nebari::Config::new(&dir).open()?;
841

            
842
6
        let context = Context::new(sled.clone(), persistence);
843
6

            
844
11
        test_contents(context, sled).await?;
845

            
846
6
        Ok(())
847
6
    }
848

            
849
5
    async fn run_test<
850
5
        F: Fn(Context, nebari::Roots<StdFile>) -> R + Send,
851
5
        R: Future<Output = anyhow::Result<()>> + Send,
852
5
    >(
853
5
        name: &str,
854
5
        test_contents: F,
855
5
    ) -> anyhow::Result<()> {
856
9
        run_test_with_persistence(name, KeyValuePersistence::default(), &test_contents).await
857
5
    }
858

            
859
1
    #[tokio::test]
860
1
    async fn basic_expiration() -> anyhow::Result<()> {
861
1
        run_test("kv-basic-expiration", |sender, sled| async move {
862
            loop {
863
1
                sled.delete_tree(KEY_TREE)?;
864
1
                let tree = sled.tree(Unversioned::tree(KEY_TREE))?;
865
1
                tree.set(b"atree\0akey", b"somevalue")?;
866
1
                let timing = TimingTest::new(Duration::from_millis(100));
867
1
                sender
868
1
                    .update_key_expiration_async(
869
1
                        full_key(Some("atree"), "akey"),
870
1
                        Some(Timestamp::now() + Duration::from_millis(100)),
871
1
                    )
872
                    .await;
873
1
                if !timing.wait_until(Duration::from_secs(1)).await {
874
                    println!("basic_expiration restarting due to timing discrepency");
875
                    continue;
876
1
                }
877
1
                assert!(tree.get(b"akey")?.is_none());
878
1
                break;
879
1
            }
880
1

            
881
1
            Ok(())
882
1
        })
883
1
        .await
884
1
    }
885

            
886
1
    #[tokio::test]
887
1
    async fn updating_expiration() -> anyhow::Result<()> {
888
1
        run_test("kv-updating-expiration", |sender, sled| async move {
889
            loop {
890
1
                sled.delete_tree(KEY_TREE)?;
891
1
                let tree = sled.tree(Unversioned::tree(KEY_TREE))?;
892
1
                tree.set(b"atree\0akey", b"somevalue")?;
893
1
                let timing = TimingTest::new(Duration::from_millis(100));
894
1
                sender
895
1
                    .update_key_expiration_async(
896
1
                        full_key(Some("atree"), "akey"),
897
1
                        Some(Timestamp::now() + Duration::from_millis(100)),
898
1
                    )
899
                    .await;
900
1
                sender
901
1
                    .update_key_expiration_async(
902
1
                        full_key(Some("atree"), "akey"),
903
1
                        Some(Timestamp::now() + Duration::from_secs(1)),
904
1
                    )
905
                    .await;
906
1
                if timing.elapsed() > Duration::from_millis(100)
907
1
                    || !timing.wait_until(Duration::from_millis(500)).await
908
                {
909
                    continue;
910
1
                }
911
1
                assert!(tree.get(b"atree\0akey")?.is_some());
912

            
913
1
                timing.wait_until(Duration::from_secs_f32(1.5)).await;
914
1
                assert_eq!(tree.get(b"atree\0akey")?, None);
915
1
                break;
916
1
            }
917
1

            
918
1
            Ok(())
919
2
        })
920
2
        .await
921
1
    }
922

            
923
1
    #[tokio::test]
924
1
    async fn multiple_keys_expiration() -> anyhow::Result<()> {
925
1
        run_test("kv-multiple-keys-expiration", |sender, sled| async move {
926
            loop {
927
1
                sled.delete_tree(KEY_TREE)?;
928
1
                let tree = sled.tree(Unversioned::tree(KEY_TREE))?;
929
1
                tree.set(b"atree\0akey", b"somevalue")?;
930
1
                tree.set(b"atree\0bkey", b"somevalue")?;
931

            
932
1
                let timing = TimingTest::new(Duration::from_millis(100));
933
1
                sender
934
1
                    .update_key_expiration_async(
935
1
                        full_key(Some("atree"), "akey"),
936
1
                        Some(Timestamp::now() + Duration::from_millis(100)),
937
1
                    )
938
                    .await;
939
1
                sender
940
1
                    .update_key_expiration_async(
941
1
                        full_key(Some("atree"), "bkey"),
942
1
                        Some(Timestamp::now() + Duration::from_secs(1)),
943
1
                    )
944
                    .await;
945

            
946
1
                if !timing.wait_until(Duration::from_millis(200)).await {
947
                    continue;
948
1
                }
949

            
950
1
                assert!(tree.get(b"atree\0akey")?.is_none());
951
1
                assert!(tree.get(b"atree\0bkey")?.is_some());
952
1
                timing.wait_until(Duration::from_millis(1100)).await;
953
1
                assert!(tree.get(b"atree\0bkey")?.is_none());
954

            
955
1
                break;
956
1
            }
957
1

            
958
1
            Ok(())
959
2
        })
960
2
        .await
961
1
    }
962

            
963
1
    #[tokio::test]
964
1
    async fn clearing_expiration() -> anyhow::Result<()> {
965
1
        run_test("kv-clearing-expiration", |sender, sled| async move {
966
            loop {
967
1
                sled.delete_tree(KEY_TREE)?;
968
1
                let tree = sled.tree(Unversioned::tree(KEY_TREE))?;
969
1
                tree.set(b"atree\0akey", b"somevalue")?;
970
1
                let timing = TimingTest::new(Duration::from_millis(100));
971
1
                sender
972
1
                    .update_key_expiration_async(
973
1
                        full_key(Some("atree"), "akey"),
974
1
                        Some(Timestamp::now() + Duration::from_millis(100)),
975
1
                    )
976
                    .await;
977
1
                sender
978
1
                    .update_key_expiration_async(full_key(Some("atree"), "akey"), None)
979
                    .await;
980
1
                if timing.elapsed() > Duration::from_millis(100) {
981
                    // Restart, took too long.
982
                    continue;
983
1
                }
984
1
                timing.wait_until(Duration::from_millis(150)).await;
985
1
                assert!(tree.get(b"atree\0akey")?.is_some());
986
1
                break;
987
1
            }
988
1

            
989
1
            Ok(())
990
1
        })
991
1
        .await
992
1
    }
993

            
994
1
    #[tokio::test]
995
1
    async fn out_of_order_expiration() -> anyhow::Result<()> {
996
1
        run_test("kv-out-of-order-expiration", |sender, sled| async move {
997
1
            let tree = sled.tree(Unversioned::tree(KEY_TREE))?;
998
1
            tree.set(b"atree\0akey", b"somevalue")?;
999
1
            tree.set(b"atree\0bkey", b"somevalue")?;
1
            tree.set(b"atree\0ckey", b"somevalue")?;
1
            sender
1
                .update_key_expiration_async(
1
                    full_key(Some("atree"), "akey"),
1
                    Some(Timestamp::now() + Duration::from_secs(3)),
1
                )
                .await;
1
            sender
1
                .update_key_expiration_async(
1
                    full_key(Some("atree"), "ckey"),
1
                    Some(Timestamp::now() + Duration::from_secs(1)),
1
                )
                .await;
1
            sender
1
                .update_key_expiration_async(
1
                    full_key(Some("atree"), "bkey"),
1
                    Some(Timestamp::now() + Duration::from_secs(2)),
1
                )
                .await;
1
            tokio::time::sleep(Duration::from_millis(1200)).await;
1
            assert!(tree.get(b"atree\0akey")?.is_some());
1
            assert!(tree.get(b"atree\0bkey")?.is_some());
1
            assert!(tree.get(b"atree\0ckey")?.is_none());
1
            tokio::time::sleep(Duration::from_secs(1)).await;
1
            assert!(tree.get(b"atree\0akey")?.is_some());
1
            assert!(tree.get(b"atree\0bkey")?.is_none());
1
            tokio::time::sleep(Duration::from_secs(1)).await;
1
            assert!(tree.get(b"atree\0akey")?.is_none());

            
1
            Ok(())
3
        })
3
        .await
1
    }

            
1
    #[tokio::test]
1
    async fn basic_persistence() -> anyhow::Result<()> {
1
        run_test_with_persistence(
1
            "kv-basic-persistence",
1
            KeyValuePersistence::lazy([
1
                PersistenceThreshold::after_changes(2),
1
                PersistenceThreshold::after_changes(1).and_duration(Duration::from_secs(2)),
1
            ]),
1
            &|sender, sled| async move {
1
                loop {
1
                    let timing = TimingTest::new(Duration::from_millis(100));
1
                    let tree = sled.tree(Unversioned::tree(KEY_TREE))?;
1
                    // Set three keys in quick succession. The first two should
1
                    // persist immediately, and the third should show up after 2
1
                    // seconds.
1
                    sender
1
                        .perform_kv_operation(KeyOperation {
1
                            namespace: None,
1
                            key: String::from("key1"),
1
                            command: Command::Set(SetCommand {
1
                                value: Value::Bytes(Bytes::default()),
1
                                expiration: None,
1
                                keep_existing_expiration: false,
1
                                check: None,
1
                                return_previous_value: false,
1
                            }),
1
                        })
                        .await
1
                        .unwrap();
1
                    sender
1
                        .perform_kv_operation(KeyOperation {
1
                            namespace: None,
1
                            key: String::from("key2"),
1
                            command: Command::Set(SetCommand {
1
                                value: Value::Bytes(Bytes::default()),
1
                                expiration: None,
1
                                keep_existing_expiration: false,
1
                                check: None,
1
                                return_previous_value: false,
1
                            }),
1
                        })
                        .await
1
                        .unwrap();
1
                    sender
1
                        .perform_kv_operation(KeyOperation {
1
                            namespace: None,
1
                            key: String::from("key3"),
1
                            command: Command::Set(SetCommand {
1
                                value: Value::Bytes(Bytes::default()),
1
                                expiration: None,
1
                                keep_existing_expiration: false,
1
                                check: None,
1
                                return_previous_value: false,
1
                            }),
1
                        })
                        .await
1
                        .unwrap();
1
                    // Persisting is handled in the background. Sleep for a bit
1
                    // to give it a chance to happen, but not long enough to
1
                    // trigger the longer time-based rule.
1
                    if timing.elapsed() > Duration::from_millis(500)
1
                        || !timing.wait_until(Duration::from_secs(1)).await
1
                    {
1
                        println!("basic_persistence restarting due to timing discrepency");
                        continue;
1
                    }
1
                    assert!(tree.get(b"\0key1").unwrap().is_some());
1
                    assert!(tree.get(b"\0key2").unwrap().is_some());
1
                    assert!(tree.get(b"\0key3").unwrap().is_none());
1
                    if !timing.wait_until(Duration::from_secs(3)).await {
1
                        println!("basic_persistence restarting due to timing discrepency");
                        continue;
1
                    }
1
                    assert!(tree.get(b"\0key3").unwrap().is_some());
1
                    break;
1
                }
1

            
1
                Ok(())
1
            },
2
        )
2
        .await
1
    }

            
1
    #[tokio::test]
1
    async fn saves_on_drop() -> anyhow::Result<()> {
1
        let dir = TestDirectory::new("saves-on-drop.bonsaidb");
1
        let sled = nebari::Config::new(&dir).open()?;
1
        let tree = sled.tree(Unversioned::tree(KEY_TREE))?;

            
1
        let context = Context::new(
1
            sled.clone(),
1
            KeyValuePersistence::lazy([PersistenceThreshold::after_changes(2)]),
1
        );
1
        context
1
            .perform_kv_operation(KeyOperation {
1
                namespace: None,
1
                key: String::from("key1"),
1
                command: Command::Set(SetCommand {
1
                    value: Value::Bytes(Bytes::default()),
1
                    expiration: None,
1
                    keep_existing_expiration: false,
1
                    check: None,
1
                    return_previous_value: false,
1
                }),
1
            })
            .await
1
            .unwrap();
1
        assert!(tree.get(b"\0key1").unwrap().is_none());
1
        drop(context);
1
        // Dropping spawns a task that should persist the keys. Give a moment
1
        // for the runtime to execute the task.
1
        tokio::time::sleep(Duration::from_millis(100)).await;
1
        assert!(tree.get(b"\0key1").unwrap().is_some());

            
1
        Ok(())
1
    }
}